Denoising without access to clean data using a partitioned autoencoder

نویسندگان

  • Dan Stowell
  • Richard E. Turner
چکیده

Training a denoising autoencoder neural network requires access to truly clean data, a requirement which is often impractical. To remedy this, we introduce a method to train an autoencoder using only noisy data, having examples with and without the signal class of interest. The autoencoder learns a partitioned representation of signal and noise, learning to reconstruct each separately. We illustrate the method by denoising birdsong audio (available abundantly in uncontrolled noisy datasets) using a convolutional autoencoder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech enhancement based on deep denoising autoencoder

We previously have applied deep autoencoder (DAE) for noise reduction and speech enhancement. However, the DAE was trained using only clean speech. In this study, by using noisyclean training pairs, we further introduce a denoising process in learning the DAE. In training the DAE, we still adopt greedy layer-wised pretraining plus fine tuning strategy. In pretraining, each layer is trained as a...

متن کامل

Ensemble modeling of denoising autoencoder for speech spectrum restoration

Denoising autoencoder (DAE) is effective in restoring clean speech from noisy observations. In addition, it is easy to be stacked to a deep denoising autoencoder (DDAE) architecture to further improve the performance. In most studies, it is supposed that the DAE or DDAE can learn any complex transform functions to approximate the transform relation between noisy and clean speech. However, for l...

متن کامل

Simple Sparsification Improves Sparse Denoising Autoencoders in Denoising Highly Noisy Images

Recently Burger et al. (2012) and Xie et al. (2012) proposed to use a denoising autoencoder (DAE) for denoising noisy images. They showed that a plain, deep DAE can denoise noisy images as well as the conventional methods such as BM3D and KSVD. Both of them approached image denoising by denoising small, image patches of a larger image and combining them to form a clean image. In this setting, i...

متن کامل

Denoising random forests

This paper proposes a novel type of random forests called a denoising random forests that are robust against noises contained in test samples. Such noise-corrupted samples cause serious damage to the estimation performances of random forests, since unexpected child nodes are often selected and the leaf nodes that the input sample reaches are sometimes far from those for a clean sample. Our main...

متن کامل

Denoising Adversarial Autoencoders

Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.05982  شماره 

صفحات  -

تاریخ انتشار 2015